G52CPP
C++ Programming
Lecture 15

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

IMPORTANT

No optional demo lecture at 2pm this week

Please instead use the time to do your
coursework

| will send you something about collision
detection (don’t worry)

We will have the ‘using app wizard and
creating fully featured programs fast’ (with
MFC) demo lecture after the Easter holidays

Last Lecture

e |nheritance and constructors
— Virtual destructors

« Namespaces and scoping

e Some standard class library classes
— String
— Input and output

Scoping/using clarification

#include <string>
#include <iostream>
using namespace std;

namespace cpp

{
void MyPrintFunctionl()
{
// Do something
}
}

void MyPrintFunctionl()
{

// Do something

using namespace cpp;

int main()
{
MyPrintFunctionl1();
}
int main()
{
::MyPrintFunctionl();
}
int main()
{

cpp::MyPrintFunction1();

Scoping/using clarification

#include <string>
#include <iostream>
using namespace std;

namespace cpp

{
void MyPrintFunctionl()
{
// Do something
}
}

void MyPrintFunctionl()
{

// Do something

using namespace cpp;

int main()
{

MyPrintFunctionl1();
}

g++ namespace.cpp
namespace.cpp: In function “int main()”:

namespace.cpp:22:19: error: call of overloaded
“MyPrintFunction1()” is ambiguous

namespace.cpp:22:19: note: candidates are:
namespace.cpp:13:6: void MyPrintFunctionl1()

namespace.cpp:7:7: void cpp::MyPrintFunctionl1()

Scoping/using clarification

#include 4 $ g++ namespace.cpp
#include 4 $

using nan
The other two work correctly, compiling with no errors
They are unambiguous

namespas
{ General rule: If there is ambiguity it will NOT compile

void NMyPTITTIFUTICUIOTTL()

{ int main()

// Do something {

} ::MyPrintFunctionl();
} }
void MyPrintFunction1() int main()
{ {

// Do something cpp::MyPrintFunction1();
} }

This Lecture

Standard template library overview
— By example — NOT VITAL

Conversion operator
Friends

Casting

— static cast

— dynamic cast
— const cast

— reinterpret cast

Standard Template Library

(You need lectures 17 and 18 to
understand how this is implemented)

A large library of template classes
and algorithms
Gives speed guarantees for the speed

STL container classes

vector
string
map

list

set

stack
gueue
deque
multimap
multiset

 Instd namespace

« Know that Standard Template Library
exists
— If you go for C++ job interview, learn basics
 These are template classes
e.g. vector<int> for vector ofint s
Unlike Java, C++ vector class will check types

e Also have iterators
— Track position/index in a container
— e.g. to iterate through a container

* And algorithms (over 70 of them)

— Apply to containers
— e.g. min(), max(), sort(), search()

Example of using vector

#include <iostream>
#include <string>
#include <vector>

using namespace std,
int main()

{

vector<char> v(10);
/l 10 elements

Int size = v.size()

cout << "Size " << size
<< endl;

// Set each value
for(inti=0;i<size ;i++)
v[i] =1,
/[Iterate through vector
vector<char>::iterator p
= v.begin();

for(; p!= vend()) ; ptt+)
p +=97;

// Output the contents
for(inti=0;i<size;i+t+)

cout << V[i] << endl;

return O;

10

Conversion operators

Conversion operator

e Convert from a class into something else
« Uses operator overloading syntax
— See lecture 17 on operator overloading

 Instead of an operator symbol, the new
type name and () are used

e e.g. convert to float:
operator float () {return...;}

e This allows the compiler to convert to the
class any time it wants to (without a cast)

12

Conversion constructor and operator

class Converter

{

public:
/[Conversion constructor
/[Convert INTO this class
Converter(inti=4);
/[Conversion operator
/[Convert FROM this class
operator int();

private:
int _i;

¥

// Conversion operator
Converter:.operator int()
{
printf("Converting to int\n");
return _i;

/I Conversion constructor
Converter::Converter(int i)

{ . .
=1

}

int main()

{
Inti=4;
/[Construction from int
Converter c1(5);
Converter c2 =1i;
/[Conversion to int:
int] = (int)c2;
int k(c2);
iIntm =k + c2;

}

13

Friends

Accessing private data

#include <cstdio>
class TheFriend

{
public:
void DoSomething(
Friendly& dest,
const Friendly& source)

{ /[Copy _I member
dest. i =source. i+ 1;

}
3
class Friendly
E)ubli(:' Data is
. - l
Friendly(inti=4) private:

: _|(|){}/
private:
int _i;

J

void FriendFunc(
const char* message,
const Friendly& thing
{ [// Access i member
printf("%s : _i = %d\n",
message, thing._1i);

iInt main()

{
Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2,dl);
FriendFunc("d2",d2);

15

Accessing prlvate data

#include <cstdio>
class TheFriend

{ to ‘Friendly’
public:
void DoSomething(
Friendly& dest,
const Friendly& source)
{ /[Copy _I member
dest. i =source. i+ 1;
} —
I3
class Friendly
E)ubli(:' Data is
Friendly(inti=4) private:

Do somethlng

void FriendFunc(
const char* message,

— const Friendly& thing

: _|(|){}/
private:
int _i;

J

{ [/l Access I member
printf("%s : _i = %d\n",
message, thing._1);

iInt main()

{
Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2,dl);
FriendFunc("d2",d2);

16

friend s

Classes can grant access to their
private member data and functions to

their friends

The class still maintains control over which
classes and functions have access

The friends of a class are treated as

class members for access purposes -
although they are not members

Declare your friends within your class body
and use the keyword friend

17

friend function

class Friendly

{

/[Make function a friend

friend void FriendFunc(
const char* message,
const Friendly& thing);

public:
Friendly(inti=4) : _i(i)
{}

private:
Int _I;

J

void FriendFunc(
const char* message,
const Friendly& thing)

{
printf(

"%s . 1 =%d\n",
message,
thing._1);

}

int main()

{

Friendly d1(2), d2;
FriendFunc("d1", d1);
FriendFunc("d2", d2);

}

friend class

.cpp file:

n file:
class Friendly; I Forward
_ declaration
class TheFriend of class
{
public:
void DoSomething(
Friendly& dest,
const Friendly& source);
3
class Friendly
{
friend class TheFriend,;
public:
Friendly(inti=4) : _i(){}
private:
Int _I;
I

void
TheFriend::DoSomething
Friendly& dest,
const Friendly& source)
{
dest. | =
source. |+ 1;

(

} Note: Could make this a
static member function since
it does not need to access or
alter any member data

int main()

{
Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2, d1);

}

Breaking the rules

Unchangable values?

 Here we have constant references passed in
 Can we change x and y?

void foo(
const int& X,
const int& y)
{
X =09;
y =19;
}

« Can we add anything to allow us to be able to change
them?

21

C++ style casts

Casting away the const -ness

« Remove the const ness of a reference or pointer
void foo(const Int& X, const int& y)

{
INt& Xr = (int&)(X) :
// Since we cast away const-ness we CAN do this
Xr =9;
/[or this
INt& yr = (int&)(y) ;
yr=19 WARNING!
J Do not actually do this
unless there is a REALLY
void const_cast_example() : gelele] e Etell
— = Casting away const -ness
{ Is usually very bad

intx =4,y=2; foo(x,Y),
printf("X = %d, y = %d\n", X, y);

}

23

const_cast <type> (var)

« Remove the const ness of a reference or pointer
void foo(const Int& X, const int& y)

{
INt& Xr = const_cast<int&>(x) ;
// Since we cast away const-ness we CAN do this
Xr =9;
/[or this
INt& yr = const_cast<int&>(y) ;
yr=19 WARNING AGAIN
J Do not actually do this
unless there is a REALLY
: good reason!
void const_cast_example() Casting away const -ness
{ Is usually very bad

intx =4,y=2; foo(x,Y),
printf("X = %d, y = %d\n", X, y);

}

24

Four new casts

const_cast< newtype >(?)

— Getrid of ‘const ’'ness (or volatile -ness)

— No cast needed to add ‘const 'ness (or volatile)
dynamic_cast< newtype >(?)

— Safely cast a pointer or reference from base-class to
sub-class

— Checks that it really IS a sub-class object
static_cast< newtype >(?)

— Cast between types, converting the type
reinterpret_cast< newtype >(?)
— Interpret the bits in one type as another
— Mainly needed for low-level code

— Effects are often platform-dependent

— l.e. ‘treat the thing at this address as if it was a...’
25

Why use the new casts?

This syntax makes the presence of casts more
obvious

— Casts mean you are ‘bending the rules’ somehow

— It is useful to be able to find all places that you do this

This syntax makes the purpose of the cast more
obvious

— I.e. casting to remove ‘const’ or to change the type

Four types give more control over what you
mean, and help you to identify the effects

Sometimes needed. dynamic_cast provides
run -time type checking

Note: Casting a pointer will not usually change
the stored address value, only the type. This Is
NOT true with multiple inheritance

26

static cast <type> (var)

e static_cast< newtype >(oldvariable)
— Commonly used cast

— Attempts to convert correctly between two types

— Usually use this when not removing const -ness and
there is no need to check the sub-class type at runtime

— Works with multiple inheritance (unlike reinterpret!)
void static_cast_example()

{
float f=4.1;

/[Convert float to an int
Int | = static_ cast<int>(f);
printf("f = %f, 1 = %d\n", f, 1);

27

dynamic_cast <type> (var)

e Casting from derived class to base class is easy
— Derived class object IS a base class object
— Base class object might not be a derived class object
e dynamic_cast<>()
— Safely convert from a base-class pointer or
reference to a sub-class pointer or reference
— Checks the type at run-time rather than compile-time

— Returns NULL if the type conversion of a pointer
cannot take place (i.e. it is not of the target type)

— There is no such thing as a NULL reference
If reference conversion fails, it throws an exception of
type std::bad cast (see Thursday lecture)

28

static_cast example

subl s1;
subl* psl = &s1; ;ase\
I/l Fine: treat as base class subl || sub2

base* pbl = psl,;

/[Treat as sub-class

sub2* ps2err = static_cast<sub2*>(pbl);
/[Static cast: do conversion.
ps2err->func();

/[This is an BAD error

/[Treating subl object as a sub2 object

dynamic_cast example

subl s1;
subl* psl = &s1; base
/| Fine: treat as base class subl || sub2

base* pbl = psl,;

/[Treat as sub-class
sub2* ps2safe = dynamic_cast<sub2*>(pbl);
// Dynamic cast. runtime check
If (ps2safe == NULL)

printf("Dynamic cast on pb2 failed\n");
else

ps2safe->func();

Exception throw n by dynamic_cast

void foo()
{ Dynamic cast on a reference

Subl si; /

Base& rb = s1;

Sub2& rs2 = dynamic_cast<Sub2&>(rb);

cout << "No exception was thrown by foo()" << endl;

}
int main() class Base
{
try / \
{
foo(): class Subl class Sub2
}
catch (bad _cast)
{ cout << "bad_cast exception thrown" << endl; }
catch (...)
{ cout << "Other exception thrown" << endl; }
} 31

‘ Note: sl is destroyed properly when stack frame is destroyed

reinterpret_cast<type>(var)

* reinterpret_cast<>()
— Treat the value as if it was a different type
— Interpret the bits in one type as another
— Including platform dependent conversions
— Hardly ever needed, apart from with low -level code
— Like saying “Trust me, you can treat it as one of these”
— e.g..
void reinterpret_cast_example()
{
inti=1,
Int*p==&1,;
| = reinterpret_cast<int>(p);
printf("I = %x, p = %p\n", I, p);

32

A Casting Question

e Where are casts needed, and what sort of
casts should be used?

(Assume BouncingBall is a sub-class of BaseEngine)
BouncingBall game;
BaseEngine* pGame = &game,; Il ?

BouncingBall * pmGame =pGame; //?

BouncingBall game;
BaseEngine& rgame = game,; Il ?
BouncingBall& rmgame = rgame; Il ?

33

Answer : pointers

BouncingBall game;
BaseEngine* pGame = &game; // No cast
BouncingBall * pmGame =

dynamic _cast< BouncingBall *>(pGamse ;
If (pGame==NULL) { [* Failed */ }

No cast needed to go from sub-class to base class.

In this case, because the game object really is a
BouncingBall , a static_cast would have worked.

But would not have checked this — would have been BAD!
34

Answer : references

BouncingBall game;

BaseGameEngine& rgame = game; // No cast
try
{

BouncingBall& rmgame =

dynamic_cast<BouncingBall&>(rgame) ;

}
catch (std::bad castb)
{

// Handle the exception

// Happens if rgame is NOT a BouncingBall
}

Need to check for any exceptions being thrown for references

Again, in this case, because the rgame really is a BouncingBall
static_cast would have worked. But would have been BAD!

, A

35

Repeat: dynamic_cast

o Safely converts from a base-class pointer
or reference to a sub -class pointer or
reference

— Checks the type at run -time rather than
compile-time, to verify it really Is a sub-class

 Returns NULL If the type conversion of a
pointer cannot take place

—l.e. It Is not of the target type

e |f reference conversion fails it throws an
exception of type std::bad cast

— There Is no such thing as a NULL reference ss

Other casts guestions

 \When would you use a const_cast ?

 What Is the difference between a
reinterpret_cast and a

static_cast ?

 \When would you use a static_cast ?

37

Answers

When would you use a const_cast ?
— To remove const or volatile qualifier
— This is the only C++ style cast that can do that

What is the difference between a reinterpret_cast
and a static_cast ?

— reinterpret_cast says change the type of the
pointer. I.e. keep the bits/bytes that it points to, but
treat it as the new type. e.g. float* to int*

— static_cast says attempt to actually do the
conversion between types (e.g. float toint)

When would you use a static_cast ?
— When none of the others apply

— I.e. unless casting from base to sub-class, wanting to
keep the bits or removing const/volatile 38

Next lecture

* Exceptions and exception handling

* RAIlI (Resource Acquisition Is Initialisation)

39

