
1

G52CPP
C++ Programming

Lecture 15

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

IMPORTANT
• No optional demo lecture at 2pm this week
• Please instead use the time to do your

coursework

• I will send you something about collision
detection (don’t worry)

• We will have the ‘using app wizard and
creating fully featured programs fast’ (with
MFC) demo lecture after the Easter holidays

2

3

Last Lecture

• Inheritance and constructors
– Virtual destructors

• Namespaces and scoping

• Some standard class library classes
– String
– Input and output

Scoping/using clarification
#include <string>

#include <iostream>

using namespace std;

namespace cpp

{

void MyPrintFunction1()

{

// Do something

}

}

void MyPrintFunction1()

{

// Do something

}

using namespace cpp;

int main()

{

MyPrintFunction1();

}

int main()

{

::MyPrintFunction1();

}

int main()

{

cpp::MyPrintFunction1();

} 4

Scoping/using clarification
#include <string>

#include <iostream>

using namespace std;

namespace cpp

{

void MyPrintFunction1()

{

// Do something

}

}

void MyPrintFunction1()

{

// Do something

}

using namespace cpp;

int main()

{

MyPrintFunction1();

}

int main()

{

::MyPrintFunction1();

}

int main()

{

cpp::MyPrintFunction1();

} 5

g++ namespace.cpp

namespace.cpp: In function “int main()”:

namespace.cpp:22:19: error: call of overloaded
“MyPrintFunction1()” is ambiguous

namespace.cpp:22:19: note: candidates are:

namespace.cpp:13:6: void MyPrintFunction1()

namespace.cpp:7:7: void cpp::MyPrintFunction1()

Scoping/using clarification
#include <string>

#include <iostream>

using namespace std;

namespace cpp

{

void MyPrintFunction1()

{

// Do something

}

}

void MyPrintFunction1()

{

// Do something

}

using namespace cpp;

int main()

{

MyPrintFunction1();

}

int main()

{

::MyPrintFunction1();

}

int main()

{

cpp::MyPrintFunction1();

} 6

$ g++ namespace.cpp
$

The other two work correctly, compiling with no errors
They are unambiguous

General rule: If there is ambiguity it will NOT compile

7

This Lecture

• Standard template library overview
– By example – NOT VITAL

• Conversion operator
• Friends
• Casting

– static cast
– dynamic cast
– const cast
– reinterpret cast

8

Standard Template Library
(You need lectures 17 and 18 to

understand how this is implemented)

A large library of template classes
and algorithms

Gives speed guarantees for the speed

9

STL container classes

vector

string

map

list

set

stack

queue

deque

multimap

multiset

• In std namespace

• Know that Standard Template Library
exists
– If you go for C++ job interview, learn basics

• These are template classes
e.g. vector<int> for vector of int s

Unlike Java, C++ vector class will check types

• Also have iterators
– Track position/index in a container
– e.g. to iterate through a container

• And algorithms (over 70 of them)
– Apply to containers
– e.g. min(), max(), sort(), search()

10

Example of using vector
#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()
{

vector<char> v(10);
// 10 elements

int size = v.size() ;

cout << "Size " << size
<< endl;

// Set each value
for(int i=0 ; i < size ; i++)

v[i] = i;

// Iterate through vector
vector<char>::iterator p

= v.begin();

for(; p != v.end() ; p++)
*p += 97;

// Output the contents
for(int i=0 ; i < size ; i++)

cout << v[i] << endl;

return 0;
}

11

Conversion operators

12

Conversion operator

• Convert from a class into something else
• Uses operator overloading syntax

– See lecture 17 on operator overloading

• Instead of an operator symbol, the new
type name and () are used

• e.g. convert to float:
operator float () { return …; }

• This allows the compiler to convert to the
class any time it wants to (without a cast)

13

Conversion constructor and operator
class Converter
{
public:

// Conversion constructor
// Convert INTO this class
Converter(int i = 4);

// Conversion operator
// Convert FROM this class
operator int();

private:
int _i;

};

// Conversion operator
Converter::operator int()
{

printf("Converting to int\n");
return _i;

}

// Conversion constructor
Converter::Converter(int i)
{

_i = i;
}

int main()
{

int i = 4;
// Construction from int
Converter c1(5);
Converter c2 = i;
// Conversion to int:
int j = (int)c2;
int k(c2);
int m = k + c2;

}

14

Friends

15

Accessing private data
#include <cstdio>
class TheFriend
{
public:

void DoSomething(
Friendly& dest,
const Friendly& source)

{ // Copy _i member
dest._i = source._i + 1;

}
};

class Friendly
{
public:

Friendly(int i = 4)
: _i(i) { }

private:
int _i;

};

void FriendFunc(
const char* message,
const Friendly& thing)

{ // Access _i member
printf("%s : _i = %d\n",

message, thing._i);
}

int main()
{

Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2,d1);
FriendFunc("d2",d2);

}

Data is
private!

16

Accessing private data
#include <cstdio>
class TheFriend
{
public:

void DoSomething(
Friendly& dest,
const Friendly& source)

{ // Copy _i member
dest._i = source._i + 1;

}
};

class Friendly
{
public:

Friendly(int i = 4)
: _i(i) { }

private:
int _i;

};

void FriendFunc(
const char* message,
const Friendly& thing)

{ // Access _i member
printf("%s : _i = %d\n",

message, thing._i);
}

int main()
{

Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2,d1);
FriendFunc("d2",d2);

}

Data is
private!

Do something
to ‘Friendly’

17

friend s
• Classes can grant access to their

private member data and functions to
their friends

• The class still maintains control over which
classes and functions have access

• The friends of a class are treated as
class members for access purposes –
although they are not members

• Declare your friends within your class body
and use the keyword friend

18

friend function

class Friendly
{
// Make function a friend
friend void FriendFunc(

const char* message,
const Friendly& thing);

public:
Friendly(int i=4) : _i(i)
{}

private:
int _i;

};

void FriendFunc(
const char* message,
const Friendly& thing)

{
printf(

"%s : _i = %d\n",
message,
thing._i);

}

int main()
{

Friendly d1(2), d2;
FriendFunc("d1", d1);
FriendFunc("d2", d2);

}

19

friend class
class Friendly;

class TheFriend
{
public:

void DoSomething(
Friendly& dest,
const Friendly& source);

};

class Friendly
{
friend class TheFriend;
public:

Friendly(int i=4) : _i(i){}
private:

int _i;
};

void
TheFriend::DoSomething (
Friendly& dest,
const Friendly& source)

{
dest._i =

source._i + 1;
}

int main()
{

Friendly d1(2), d2;
TheFriend f;
f.DoSomething(d2, d1);

}

Forward
declaration
of class

Note: Could make this a
static member function since
it does not need to access or

alter any member data

.cpp file:.h file:

20

Breaking the rules

21

Unchangable values?
• Here we have constant references passed in
• Can we change x and y?

void foo(

const int& x,

const int& y)

{

x = 5;

y = 19;

}

• Can we add anything to allow us to be able to change
them?

22

C++ style casts

23

Casting away the const -ness
• Remove the const ness of a reference or pointer
void foo(const int& x, const int& y)
{

int& xr = (int&)(x) ;
// Since we cast away const-ness we CAN do this
xr = 5;
// or this
int& yr = (int&)(y) ;
yr = 19;

}

void const_cast_example()
{

int x = 4, y = 2; foo(x, y);
printf("x = %d, y = %d\n", x, y);

}

WARNING!
Do not actually do this

unless there is a REALLY
good reason!

Casting away const -ness
is usually very bad

24

const_cast <type> (var)
• Remove the const ness of a reference or pointer
void foo(const int& x, const int& y)
{

int& xr = const_cast<int&>(x) ;
// Since we cast away const-ness we CAN do this
xr = 5;
// or this
int& yr = const_cast<int&>(y) ;
yr = 19;

}

void const_cast_example()
{

int x = 4, y = 2; foo(x, y);
printf("x = %d, y = %d\n", x, y);

}

WARNING AGAIN
Do not actually do this

unless there is a REALLY
good reason!

Casting away const -ness
is usually very bad

25

Four new casts
• const_cast< newtype >(?)

– Get rid of ‘const ’ness (or volatile -ness)
– No cast needed to add ‘const ’ness (or volatile)

• dynamic_cast< newtype >(?)
– Safely cast a pointer or reference from base-class to

sub-class
– Checks that it really IS a sub-class object

• static_cast< newtype >(?)
– Cast between types, converting the type

• reinterpret_cast< newtype >(?)
– Interpret the bits in one type as another
– Mainly needed for low-level code
– Effects are often platform-dependent
– i.e. ‘treat the thing at this address as if it was a…’

26

Why use the new casts?
• This syntax makes the presence of casts more

obvious
– Casts mean you are ‘bending the rules’ somehow
– It is useful to be able to find all places that you do this

• This syntax makes the purpose of the cast more
obvious
– i.e. casting to remove ‘const’ or to change the type

• Four types give more control over what you
mean, and help you to identify the effects

• Sometimes needed: dynamic_cast provides
run -time type checking

• Note: Casting a pointer will not usually change
the stored address value, only the type. This is
NOT true with multiple inheritance

27

static_cast <type> (var)

• static_cast< newtype >(oldvariable)
– Commonly used cast
– Attempts to convert correctly between two types
– Usually use this when not removing const -ness and

there is no need to check the sub-class type at runtime
– Works with multiple inheritance (unlike reinterpret!)
void static_cast_example()

{

float f = 4.1;

// Convert float to an int

int i = static_cast<int>(f);

printf("f = %f, i = %d\n", f, i);

}

28

dynamic_cast <type> (var)

• Casting from derived class to base class is easy
– Derived class object IS a base class object
– Base class object might not be a derived class object

• dynamic_cast<>()

– Safely convert from a base-class pointer or
reference to a sub-class pointer or reference

– Checks the type at run-time rather than compile-time
– Returns NULL if the type conversion of a pointer

cannot take place (i.e. it is not of the target type)
– There is no such thing as a NULL reference

If reference conversion fails, it throws an exception of
type std::bad_cast (see Thursday lecture)

29

static_cast example

sub1 s1;

sub1* ps1 = &s1;

// Fine: treat as base class

base* pb1 = ps1;

// Treat as sub-class

sub2* ps2err = static_cast<sub2*>(pb1);

// Static cast: do conversion.

ps2err->func();

// This is an BAD error

// Treating sub1 object as a sub2 object

base

sub1 sub2

30

dynamic_cast example
sub1 s1;

sub1* ps1 = &s1;

// Fine: treat as base class

base* pb1 = ps1;

// Treat as sub-class

sub2* ps2safe = dynamic_cast<sub2*>(pb1);

// Dynamic cast: runtime check

if (ps2safe == NULL)

printf("Dynamic cast on pb2 failed\n");

else

ps2safe->func();

base

sub1 sub2

31

Exception throw n by dynamic_cast
void foo()
{

Sub1 s1;
Base& rb = s1;
Sub2& rs2 = dynamic_cast<Sub2&>(rb);
cout << "No exception was thrown by foo()" << endl;

}
int main()
{

try
{

foo();
}
catch (bad_cast)
{ cout << "bad_cast exception thrown" << endl; }
catch (...)
{ cout << "Other exception thrown" << endl; }

}

class Base

class Sub1 class Sub2

Dynamic cast on a reference

Note: s1 is destroyed properly when stack frame is destroyed

32

reinterpret_cast<type>(var)

• reinterpret_cast<>()
– Treat the value as if it was a different type
– Interpret the bits in one type as another
– Including platform dependent conversions
– Hardly ever needed, apart from with low -level code
– Like saying “Trust me, you can treat it as one of these”
– e.g.:
void reinterpret_cast_example()
{

int i = 1;
int* p = & i;
i = reinterpret_cast<int>(p);
printf("i = %x, p = %p\n", i, p);

}

33

A Casting Question

• Where are casts needed, and what sort of
casts should be used?

(Assume BouncingBall is a sub-class of BaseEngine)

BouncingBall game;

BaseEngine* pGame = &game; // ?

BouncingBall * pmGame = pGame; // ?

BouncingBall game;

BaseEngine& rgame = game; // ?

BouncingBall& rmgame = rgame; // ?

34

Answer : pointers

BouncingBall game;

BaseEngine* pGame = &game ; // No cast

BouncingBall * pmGame =

dynamic_cast< BouncingBall *>(pGame) ;

if (pGame==NULL) { /* Failed */ }

No cast needed to go from sub-class to base class.

In this case, because the game object really is a
BouncingBall , a static_cast would have worked.
But would not have checked this – would have been BAD!

35

Answer : references
BouncingBall game;
BaseGameEngine& rgame = game; // No cast
try
{

BouncingBall& rmgame =
dynamic_cast<BouncingBall&>(rgame) ;

}
catch (std::bad_cast b)
{

// Handle the exception
// Happens if rgame is NOT a BouncingBall

}

Need to check for any exceptions being thrown for references

Again, in this case, because the rgame really is a BouncingBall , a
static_cast would have worked. But would have been BAD!

36

Repeat: dynamic_cast

• Safely converts from a base-class pointer
or reference to a sub -class pointer or
reference
– Checks the type at run -time rather than

compile-time, to verify it really is a sub-class

• Returns NULL if the type conversion of a
pointer cannot take place
– i.e. it is not of the target type

• If reference conversion fails it throws an
exception of type std::bad_cast

– There is no such thing as a NULL reference

37

Other casts questions

• When would you use a const_cast ?

• What is the difference between a
reinterpret_cast and a
static_cast ?

• When would you use a static_cast ?

38

Answers

• When would you use a const_cast ?
– To remove const or volatile qualifier
– This is the only C++ style cast that can do that

• What is the difference between a reinterpret_cast
and a static_cast ?
– reinterpret_cast says change the type of the

pointer. i.e. keep the bits/bytes that it points to, but
treat it as the new type. e.g. float* to int*

– static_cast says attempt to actually do the
conversion between types (e.g. float to int)

• When would you use a static_cast ?
– When none of the others apply
– i.e. unless casting from base to sub-class, wanting to

keep the bits or removing const/volatile

39

Next lecture

• Exceptions and exception handling

• RAII (Resource Acquisition Is Initialisation)

